AGA215 - LISTAS AULAS 9 E 10 (11/09/19) - Entregar até dia (18/09/19)

TELESCÓPIOS I e II

NOME:	GABA	RITO	
-------	------	------	--

VERDADEIRO OU FALSO (2 PONTOS):

- 1. (V) É bem mais fácil construir grandes telescópios refletores do que refratores.
- 2. (F) Aberração cromática afeta telescópios refratores e refletores igualmente, a menos que eles tenham grandes distâncias focais.
- 3. (F) A função principal de um telescópio astronômico é magnificar imagens de objetos distantes fazendo com que eles apareçam mais próximos.
- 4. (v) O foco Cassegrain de um telescópio é construído fazendo-se uma abertura no centro do espelho primário.
- 5. (V) A habilidade de um telescópio coletar luz depende do diâmetro de sua objetiva primária.
- 6. O Pode-se "resolver" mais fácil uma estrela dupla, cujas componentes estão muito próximas, com um filtro azul ao invés de um vermelho.
- 7. (V) Uma das razões para se construir um telescópio no topo de uma montanha é que o seeing torna-se menor reduzindo-se a quantidade de ar acima do observador.
- 8. (v) Telescópios ópticos são geralmente utilizados à noite, enquanto rádio-telescópios podem ser utilizados de dia e de noite.
- 9. (V) Radiotelescópios tem resolução angular mais pobre do que telescópios ópticos por causa do comprimento de onda em que trabalham.
- 10.(1) Todos os radiotelescópios são do tipo refletor.
- 11.(F) Interferometria óptica é mais usada do que interferometria rádio.
- 12.(V) Devido a camada de ozônio, observações no UV devem ser feitas no espaço.
- 13.(♥) O HST pode obter dados no visível, UV e IR.
- 14.(F) Galáxias tem a mesma imagem quando vistas no visível ou raios-X.
- 15. (F) O telescópio espacial Spitzer está numa órbita longe da Terra, pois isso aumenta o campo de visão do mesmo.
- 16.() O melhor modo de estudar estrelas que se formaram atrás de uma nuvem escura interestelar é através do infravermelho.

COMPLETAR O QUE FALTA (3 PONTOS):

- 1. O poder de coleta de luz de um telescópio varia com a AREA de lentes ou espelhos.
- 2. A habilidade de um telescópio em separar duas estrelas muito próximas angularmente chamase <u>roder de Resolução</u>.
- 3. É a DIFRAÇÃO que limita a resolução de um telescópio de um dado diâmetro de objetiva,
- 4. A cintilação da luz das estrelas bem como o foco das imagens por lentes são ambas devido a REFRAÇÃO da luz.
- 5. A resolução de um telescópio depende do COMPRIMENTO DE ONDA e do DIAMETRO.
- 6. A resolução angular de um telescópio de 20 cm de diâmetro é 🔼 📉 melhor do que a de um telescópio de 5 cm de diâmetro.

- 7. O SECINO é a medida da estabilidade da atmosfera, usualmente degradada pela turbulência do ar.
- 8. O HST possui foco CASSEGRAIN
- 9. A éptica ativa corrige DEFORMAÇÕES NO ESPELHO PRIHÁRIO DEVIDO A VARIAÇÃO DE TEMPERATURA NA CÚPULA E MUDANÇA DE POSIÇÃO DO TELESCÓPIO DURANTE AS OBSENVAÇÕES.
- 10. A óptica adaptativa corrige O EFEITO CAUSADO PELA TURBOLÊNCIA
- 11. Radiotelescópios obtêm uma imagem de um universo mais Feio em temperatura do que a radiação visível.
- 12. Radiação UV nos fornece imagens de um universo mais QUENTE em temperatura do que a radiação visível.
- 13. Se usado como um único instrumento para o aumento da resolução, os quatro espelhos separados do VLT podem atuar como um interesta a metro.
- 14. A faixa de radiação eletromagnética que não se consegue focalizar ainda para observação é
- 15. Quando múltiplos radiotelescópios são usados para interferometria, a resolução é melhorada através do aumento da(o) SEPARAÇÃO ENTRE OS PRATOS MAIL DISTANTES.
- 16. O melhor intervalo de frequência para estudar o gás quente intergaláctico de 10⁶ K no aglomerado de Virgem é em PRIOS X.

PROBLEMAS (4 pontos)

- 1. Um telescópio de 0,76 m pode coletar uma certa quantidade de luz em 1 hora. Quanto tempo necessita um telescópio de 4,5 m para coletar a mesma quantidade de luz (em minutos)?
- 2. Sobre uma abertura circular pequena incide uma luz monocromática de 700 nm. Num anteparo, a 2,00 m de distância, o afastamento linear entre o segundo mínimo de difração e o máximo central é de 1,50 cm. (a) calcular o ângulo de difração em graus deste segundo mínimo. (b) qual o diâmetro da abertura em mícrons?
- 3. Qual o tamanho que deve ter a pupila de um olho para ver comprimentos de onda rádio com a mesma resolução angular que se observa na radiação visível? (Resolução angular do olho = 1' e $\lambda_{rádio}$ típico $\sim 10^{-1}$ m). A que conclusão pode-se chegar baseado neste resultado?
- 4. Um telescópio espacial pode atingir um limite de difração de 0,05" para a luz vermelha (comprimento de onda de 700 nm). Qual serão as resoluções angulares deste telescópio para: (a) o infravermelho em 3,5 µm, (b) o ultravioleta em 140 nm?

NOME ___

Universidade de São Paulo Instituto de Astronomia, Geofísica e Ciências Atmosféricas

N.º USP

CURSO	NOTA EXAMINADORES
DISCIPLINA GABARITO	
DATA/	
/ 3	
(1) - to,76 = (4,5) => t4,5=	1h = 0,0285h= 1,7 min
t4,5 (0,76)	4,5 \2
	0,761
(2) -	
	(a)
θ	
1	tg 0 = 1,5cm =0,43
1,50	m 200cm
2 00 cm	
<u>(b)</u>) = Dim 0 = 1,22x 7
Vap-	\mathcal{D}_{-}
	D = 1,22 x 0,7 um
	Dim 0,430
	D= 114 4m
12 m	
3 O LINITE DE DIFRAÇÃO OU RESOLU	são é Dama Dam I
DB = 251.643 7(") => D = 2	WITO x CHO.1C.
2 - 0	60"
=> D= 419 m => A PUPILA DO 9	OLHO DEVERA SER
MUITO GRANDI	

(F)	D = 251.643 2	=>	251,64	3 × 700 × 1	Om	= 3,5m c	le
	Δ	0		0,05		diame	to
(a) 7=3,54m=	s ΔΘ =	251.643	× 3,5×10	m =	0,25"m	5
				3,50	ກ	IR	_
(o) 7 = 240 mm	=> DO ==	= 251.643	5 × 140 × 18	59 m	= 0,01"	10 UV
				3,50			
	-			2			
					* 22.0	V .	
п					9	8	
	,						
		el.					
			*			a a	
				v.			
	e .	9			4	v , o	
					d		
				2			
					-		
	ž 1				2	п	
1				7		2	
					19		

1/4