Questão 1 Correto Atingiu 1,00 de 1,00	Sobre um meio capaz de interagir com a radiação, incide 108 Wm ⁻² µm ⁻¹ num determinado comprimento de onda. O meio absorve 15 Wm ⁻² µm ⁻¹ e transmite diretamente 58 Wm ⁻² µm ⁻¹ . Supondo que esse meio também promove espalhamento de radiação de forma simétrica, determine o valor da irradiância espectral refletida.
🌪 Marcar questão	Vale (0,5 pontos)
	Resposta: 17,5 Wm^(-2) um^(-1)
	Você não forneceu a unidade correta.
	Comentário: ok, estou considerando correta a unidade.
Questão 2 Correto Atingiu 1,00 de 1,00 ♥ Marcar questão	Sobre um meio capaz de interagir com a radiação, incide 100 Wm ⁻² µm ⁻¹ num determinado comprimento de onda. O meio absorve 19 Wm ⁻² µm ⁻¹ e transmite diretamente 55 Wm ⁻² µm ⁻¹ . Supondo que esse meio também promove espalhamento de radiação de forma simétrica, determine a espessura óptica do meio nesse mesmo comprimento de onda. Vale (0,5 pontos) Resposta: 0,59
Questão 3 Correto Atingiu 1,00 de 1,00 V Marcar questão	Um aluno de iniciação científica mediu, com o auxílio de um espectroradiômetro e de um termômetro, respectivamente, a radiância espectral emitida por um objeto e a sua temperatura. O termômetro registrou temperatura de 296 K. No comprimento de onda de emissão máxima, o valor da radiância espectral medida foi igual a 8,4 Wm ⁻² sr ⁻¹ µm ⁻¹ . O objetivo final era estimar a irradiância total emitida pelo objeto. A única informação a mais que o estudante sabe é que a absortância desse objeto não varia no espectro infravermelho. Responda às questões abaixo, justificando sua resposta com base nas leis de radiação. a) (0,5) Qual o comprimento de onda de emissão máxima desse objeto em micrômetros?
	Resposta: 9,78
Questão 4 Correto Atingiu 1,00 de 1,00 V Marcar questão	(0,5) Podemos afirmar que se trata de um corpo negro? Verifique essa hipótese. Escolha uma opção: ○ Verdadeiro ● Falso ✓
Questão 5 Correto Atingiu 4,00 de 4,00 P Marcar questão	(2,0) Qual o valor de sua emissividade? Resposta: 0,9
	Comentário: ok.

Questão 6 Correto Atingiu 2,00 de 2,00 V Marcar questão	(1,0) Determine a irradiância total emitida pelo objeto. Resposta: 391,7 Wm^(-2)
	Comentário: ok
Questão 7 Correto Atingiu 2,00 de 2,00 V Marcar	a) (0,5) Determine o valor do ângulo zenital solar , no instante da passagem meridiana, no dia do seu aniversário (indicar explicitamente o dia e o mês na folha de respostas a ser enviada) , sobre a linha do equador. b) (0,5) E qual a duração do dia com sol , na latitude de 60° S, nessa mesma data?
questão	Resposta: a) 90° b) 9h01min

Questão **8** Completo Atingiu 2,00 de 6,00 **V** Marcar questão

Os processos de absorção e espalhamento causam atenuação da radiação incidente. Entretanto, tratam-se de processos distintos da interação entre radiação e matéria. Analise as diferenças entre esses processos, especificando quais as propriedades dos constituintes atmosféricos que determinam a capacidade de interagir com a radiação através de cada processo, fazendo também a distinção entre gases e partículas de aerossol. Comente também como a dependência espectral varia e o que acontece com a radiação incidente em cada caso.

Esta questão vale 3,0 pontos.

No caso da absorção, esta pode ser realizada por gases e partículas de aerossol (diferenciados pela ordem de grandeza), por exemplo. A radiação incidente, na absorção, será transformada em outro tipo de energia, podendo ser cinética ou potencial. No entanto, a dependência espectral é variável. No caso da cinética de rotação, há menos energia (com λ =10^3 a 10^5 um) e possui dipolo permanente. A cinética de vibração possui energia intermediária (com 1um< λ <20um) e possui dipolo elétrico variável. A energia de translação ocorre com λ ~100um. Tem-se, também, a energia eletrônica, que é a energia potencial envolvida nas transições eletrônicas, abrangendo a região espectral do UV e do visível. Além disso, há processos responsáveis por pelo alargamento de linhas de absorção/emissão de radiação de gases: a colisão entre as moléculas, a qual predomina na baixa atmosfera, havendo transferência de energia entre as moléculas; o Efeito Doppler, causado devido à velocidade térmica das moléculas na atmosfera, sendo mais eficiente onde há uma baixa densidade de moléculas; e o Princípio da Incerteza, com efeitos desprezíveis em relação aos outros dois.

O espalhamento é causado por moléculas de gases, partículas de aerossol e nuvens. Com isso, a radiação incidente será desviada. Tem-se o Espalhamento Rayleigh, o qual explica o espalhamento de radiação por partículas com tamanho muito menor que o comprimento de onda da radiação incidente; este é responsável por explicar a cor azul do céu. Além disso, tem-se, também, o Espalhamento Mie, o qual interage com partículas maiores, esféricas, com raio aproximadamente igual ao comprimento de onda.

Diante disso, entende-se que há grande diferença entre os processos. A absorção remove energia radiativa do feixe incidente, transformando-a em outros tipos de energia. Enquanto no espalhamento, a energia que incide em uma direção é desviada para outras direções, havendo a produção de radiação difusa.

Comentário: Comentários: 1) Ordem de grandeza de quê? De concentração, de tamanho? 2) para que ocorra absorção de radiação por moléculas é necessário que elas possuam momento de dipolo elétrico ou magnético permanente e não apenas dipolo permanente. 3) faltou explicar que, no caso de aerossóis e nuvens, acontece absorção de radiação por tais partículas caso a parte imaginária do índice de refração seja diferente de zero. 4) finalmente, faltou discutir como a geometria de espalhamento é alterada conforme a relação entre o tamanho da partícula espalhadora e o comprimento de onda da radiação incidente, com predomínio de espalhamento frontal para partículas maiores que o comprimento de onda. Questão 9 (1,0) Assinale todos os sensores classificados como fotodetectores: Correto Escolha uma ou mais: Atingiu 2,00 de a. bolômetro 2,00 🔄 b. fotocondutor 🗸 🅐 Marcar questão 👩 c. fotovoltaico 🏑 d. termopilha 🗾 e. fotoemissivo 🗸

Sua resposta está correta.

(2)
$$t_{d} = \frac{ss}{100}$$

 $t_{d} = 0, ss = 0$ admensional
 $t_{d} = e^{s}$
 $h_{d} = he^{s}$
 $h_{d} = he^{s}$
 $\delta = h_{d}$
 $\delta = 0, sg$

) Am= 2857 T 1m= 9,78 pm

. ~ 5

4

(5)
$$E = \frac{8,4}{9,26}$$
 Wm² ri Wm²
 $\frac{9,26}{8}$ Wm² ri² pm²}
 $E = 0,9$

) a) 23/04 $y=0^{\circ}$ publizande formula de apestila $50 = 12,1028277^{\circ}$

(cilcule Ho
Ho = creccer (-
$$ty(0^{\circ})$$
. $ty(12,1025275)$
Ho = 90°
Cor g = regal reado - cost f cordo costso
(or $5^{\circ} = 0$
 $t_{0} = 90^{\circ}$
b) Ho = orcos (- $ty(-60^{\circ})$. $ty(12,10252775)$
Ho = $68,1457463355$
 $N = 2Ho$
 $N = 136,3555 = 9h01$ mm