Prova 2 – Cálculo Numérico IAG (MAP0214) – 29.11.2019

(1) (8pts) Use um método de integração para, de maneira justificada, obter a integral $\int_0^\pi e^{\cos x} \, dx$ com precisão de 10^{-2} .

Ajuda:

$$(e^{\cos x})'''' = e^{\cos x} (\sin^4 x - 4 \sin^2 x + 3 \cos^2 x + \cos x - 6 \sin^2 x \cos x)$$

(2) (4pts) Seja $p_a(x)$ o polinômio quadrático que interpola a tabela abaixo.

x_i	$f(x_i)$
0	1
а	2
1	0

(a) Calcule esse polinômio (deixando-o em função de a). (b) A derivada de p_a em x=1/2 depende de a?

Atenção: quem fizer direitinho a questão (3) terá feito boa parte da questão (4). Por isso sugiro fazer nessa ordem. Se não souber a (3), a (4) pode ser feita diretamente.

(3) (6pts) Faça o spline cúbico grampeado dos dados abaixo, colocando (primeira) derivada zero nos pontos extremos.

x_i	$f(x_i)$
0	e
$\pi/2$	1
π	e^{-1}

(4) (6pts) Seja $f(x)=e^{\cos x}$ (é a função que aparece como integrando da questão (1)). Calcule a interpolação de Hermite de f para os pontos $\{0,\frac{\pi}{2},\pi\}$.