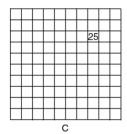
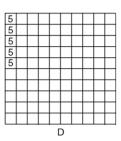

## Prova 2 - Física 2 (4302112) - IFUSP - Setembro de 2016 - Diurno


| Nome: | $N^{\underline{o}}$ USP: | Turma/Prof.: |
|-------|--------------------------|--------------|
|       |                          |              |


## Questões

1. (a) [0,5 ponto] A figura mostra quatro arranjos possíveis para a distribuição de 25 quanta de energia em uma matriz de 10 por 10 osciladores.

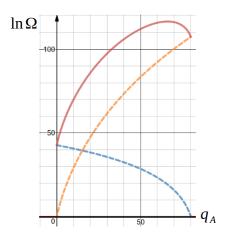






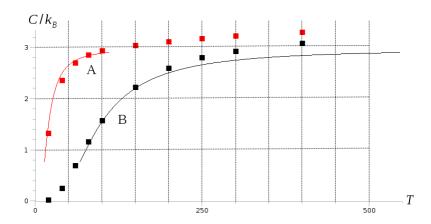


Qual o arranjo mais provável?


( ) O arranjo \_\_\_\_\_.

( ) Todos os arranjos são igualmente prováveis.

Justifique sua resposta:


(b) [1,0 ponto] Considere duas distribuições de 4 quanta de energia em uma matriz de 2 por 4 osciladores. Na divisão X, todos os 4 quanta estão localizados na metade esquerda da matriz, enquanto na divisão Y há 2 quanta em cada uma das metades da matriz. Qual a razão entre as probabilidades de observação da divisão Y e da divisão X?

2. [2,0 pontos] Dois sólidos de Einstein (A e B) estão em contato térmico. O gráfico abaixo apresenta as curvas do logaritmo do número de microestados do sistema A, do sistema B, e do sistema composto (C=A+B), em função do número de quanta  $q_A$  do sistema A. O sistema composto pode ser considerado um sistema isolado. Identifique claramente o sistema que corresponde a cada curva apresentada, e assinale as afirmações abaixo com a letra V (verdadeira) ou F (falsa). Justifique cada uma no espaço apropriado.



- ( ) As temperaturas de A e B são iguais em um certo ponto no intervalo  $10 < q_A < 20$ .
- ( ) No ponto de máximo do número de microestados, a energia média por oscilador é igual nos dois sólidos.
- ( ) A inclinação da curva de A tem a mesma magnitude que a de B em um certo ponto no intervalo  $60 < q_A < 80$ .
- ( ) A temperatura do sistema composto é nula em um certo ponto no intervalo  $60 < q_A < 80$ .
- ( ) A temperatura de equilíbrio desse sistema é ligeiramente superior a  $T = \frac{\hbar \omega}{k_B}$  (o valor do quântum dividido pela constante de Boltzmann).
- ( ) Quando os dois sólidos podem trocar energia e atingir o equilíbrio térmico, a divisão mais provável da energia é aquela em que ambos os sólidos têm a mesma entropia.

3. [1,5 ponto] A figura abaixo apresenta os dados experimentais do calor específico por átomo dividido por  $k_B$  de dois tipos diferentes de sólido, comparados às previsões do modelo de Einstein.



- (a) Qual seria, grosso modo, a razão entre a energia dos quanta dos dois tipos de sólido? Justifique.
- (b) Explique qualitativamente por que as curvas teóricas de ambos os sólidos tendem para o valor  $C=3k_B$  a altas temperaturas.
- (c) Supondo que os dois sólidos tenham aproximadamente a mesma "constante de mola" interatômica, qual dos dois teria a maior massa atômica? Justifique.

## **Problemas**

- 1. [3,0 pontos] Em um certa faixa de temperaturas, uma certa substância tem seu calor específico (medido por massa) bem descrito pela expressão  $c(T) = a + \frac{b}{T}$ , em que a e b são constantes e T é a temperatura absoluta.
  - (a) Calcule a expressão que determina a variação infinitesimal da <u>energia</u> interna de uma amostra de massa m dessa substância, em virtude de uma variação infinitesimal da temperatura, de T até T + dT. Em seguida, obtenha a expressão geral para a variação da energia interna quando a temperatura varia de  $T_i$  até  $T_f$ , dentro da faixa de validade da expressão para c(T).
  - (b) Calcule a expressão que determina a variação infinitesimal da entropia de uma massa m dessa substância, em virtude de uma variação infinitesimal da temperatura, de T até  $\overline{T+dT}$ . Em seguida, obtenha a expressão geral para a variação da entropia quando a temperatura varia de  $T_i$  até  $T_f$ .

- 2. [2,0 pontos] Suponhamos que, ao nível do solo, a probabilidade de encontrar dois tipos de moléculas raras de massas diferentes,  $m_1$  e  $m_2$  no ar sejam aproximadamente iguais.
  - (a) Qual seria a probabilidade relativa  $\frac{P_2}{P_1}$  de encontrar estas mesmas moléculas a uma altura h do solo tal que  $gh(m_2 m_1) = \ln(2)k_BT$ ? Explicite claramente seu raciocínio e as hipóteses fundamentais que estão envolvidas nele.
  - (b) Calcule novamente esta probabilidade relativa se a temperatura ambiente fosse reduzida a um terço da inicial, mantendo-se a mesma altura h.