

USP 4300159 – Física do Calor - Diurno

Provinha 2 (25/05/2021)

Observação: Todos os itens das questões devem apresentar solução. Os que apresentarem apenas as respostas NÃO serão corrigidos.

<u>Constantes:</u> σ = 5,67 x 10 ⁻⁸ W/m².K⁴, R = 8,3 J/mol.K = 0,083 atm.L/mol.K; k = 1,3x10⁻²³J/K; N_A= 6,02x10²³ moléculas/mol

Conversões: 1 atm = 1×10^5 Pa; 1L = 10^3 cm³ = 10^{-3} m³; 1cal = 4,18 J

DURAÇÃO: 10:30h as 13:00h

Não esqueça de fazer o UPLOAD, SALVAR e ENVIAR a resolução no Moodle

Caso você tenha problemas com o Moodle, me envie o arquivo PDF com a resolução da provinha por email: kaline@if.usp.br

- 1) Num laboratório tem dois recipientes cilíndricos (ver figura), A e B, com a mesma área da base de 0,1 m² e a massa de gás de 1 kg, mas com gases diferentes nas mesmas condições termodinâmicas: temperatura de 30°C e pressão de 10 atm. O recipiente A contem gás de argônio (Ar) que tem 29 g/mol e o recipiente B contem gás de oxigênio (O₂) que tem 32 g/mol, assumindo que o modelo de gás ideal é valido determine:
 - (a) (0,5) o número de moléculas que tem em cada recipiente, N_A e N_B , e a altura de cada recipiente, h_A e h_B ;
 - (b) (0,5) a energia cinética média por molécula de gás contido em cada recipiente, $E_c(A)$ e $E_c(B)$ e a velocidade quadrática média das moléculas em cada recipiente, $v_{rmq}(A)$ e $v_{rmq}(B)$.
 - (c) (0,20) Por que as moléculas de um dos gases têm em média mais energia cinética que o outro?

Um aluno notando que os cilindro tinham alturas diferentes, h_A e h_B , decidiu mover lentamente o êmbolo superior de cada recipiente para que os dois ficassem com a mesma altura que seria a média das duas alturas iniciais, h_f = $(h_A + h_B)/2$. Sabendo que este processo manteve a mesma temperatura de cada gás, determine

- (d) (0,5) o trabalho realizado pelo gás em cada recipiente, W_A e W_B;
- (e) (0,5) a variação de energia interna das moléculas do gás em cada recipiente, ΔU_A e ΔU_B , e o calor trocado de cada recipiente com o ambiente, Q_A e Q_B .
- (f) (0,3) Discuta a troca de calor de cada recipiente com o ambiente. Se as paredes do recipiente fossem isolantes térmicos e não permitissem a troca de calor com o ambiente durante o processo, o que você poderia dizer sobre a temperatura final de cada recipiente?

