Primeira Lista de Exercícios de Física Matemática I – Soluções

(Equação a Derivadas Parciais de Laplace e Problemas de Valor de Fronteira)

IFUSP - 9 Setembro 2015

Exercício 1 Os autovalores e autofunções correspondentes do problemas de valor de fronteira são:

1. A solução geral de $X'' + \lambda^2 X = 0$

$$X(x) = A\cos\lambda x + B\sin\lambda x \tag{1}$$

em(0,L) com

$$X(0) = A = 0$$

$$X'(L) = \lambda \cos \lambda L = 0$$

resulta em $\lambda_n = (n-1/2) \pi/L$, n = 1, 2, ... (semi-inteiros múltiplos de π/L), e

$$X_n = \sin\frac{(2n-1)\pi}{2L}x \ .$$

2. A solução geral (1) de $X'' + \lambda^2 X = 0$ em $(-\pi, \pi)$ sujeita a

$$X(\pi) - X(-\pi) = 2B \sin \lambda \pi = 0$$

$$X'(\pi) - X'(-\pi) = -2\lambda A \sin \lambda \pi = 0$$

resulta em: para $\lambda = 0$ temos $X_0 = 1$ e para cada $\lambda_n = n$, n = 1, 2, ..., temos duas autofunções L.I. correspondentes

$$X_n^{(\text{par})}(x) = \cos nx \qquad (B=0)$$

$$X_n^{\text{(impar)}}(x) = \sin nx \qquad (A=0) .$$

3. A solução geral (1) de $X'' + \lambda^2 X = 0$ em (0,1) satisfazendo

$$X(0) = A = 0$$

$$X'(1) + hX(1) = B(\lambda \cos \lambda + h \sin \lambda) = 0$$

resulta em uma equação transcendental para os autovalores

$$\cot \lambda = -\frac{h}{\lambda}$$

cuja solução gráfica é dada pela intersecção das curvas cot λ e as hipérboles $-h/\lambda$ (h=1 na figura). Se λ_n , $n=1,2,\ldots$, enumera os autovalores positivos em ordem crescente:

$$\lambda_1 < \lambda_2 < \cdots < \lambda_n < \cdots$$

temos (numéricamente) $\lambda_1 = 2.0287578$, $\lambda_2 = 4.9131804$, $\lambda_3 = 7.9786657$, $\lambda_4 = 11.0855384$, $\lambda_5 = 14.2074367$ e $\lambda_n \sim (n-1/2)\pi$ assintóticamente quando n tende a ∞ . A n-ésima autofunções correspondentes a λ_n é

$$X_n(x) = \sin \lambda_n x.$$

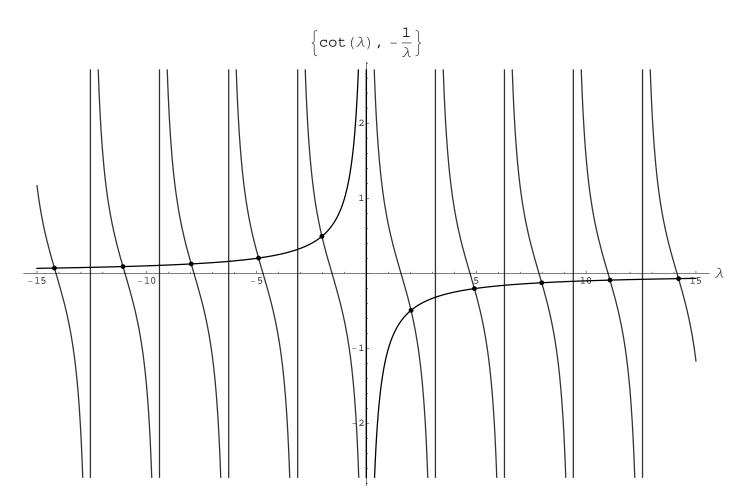


Figure 1: As coordenadas dos pontos de intesecção das curvas cot λ e $-1/\lambda$, são os autovalores do problema de fronteira do ítem 3 com h=1

Exercício 2 Considere a equação do calor $u_t - u_{xx} = 0$ em $R = \{(t, x) : t > 0, 0 < x < \pi\}$ sujeita às condições $u_x(t, 0) = u_x(t, \pi) = 0$, t > 0 e u(0, x) = f(x), $0 \le x \le \pi$, com

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$
.

1. As $funções\ u_0(t,x) = 1\ e\ u_n(t,x) = e^{-n^2t}\cos nx,\ n = 1, 2, ...,\ satisfazem$

$$(u_0)_t = (u_0)_{xx} = 0$$
, em R

 $e\left(u_{0}\right)_{x}(t,x)\equiv0$ garante as condições nas fronteiras x=0 e $x=\pi;$ para todo $n\in\mathbb{N}$,

$$(u_n)_{xx} = -n^2 u_n = (u_n)_t$$
, em R,

e

$$(u_n)_r(t,0) = 0$$

$$(u_n)_x(t,\pi) = -ne^{-n^2t}\sin n\pi = 0$$
,

identicamente para $t \geq 0$, concluindo a verificação destas como soluções das equações homogêneas (eq. do calor e cond. de fronteira).

2. Por linearidade das operações diferenciais e ítem 1, a combinação linear

$$u(t,x) = \frac{a_0}{2} u_0(t,x) + \sum_{n=1}^{\infty} a_n u_n(t,x),$$

satisfaz, sem se preocupar com questões sobre a convergência da série e supondo legítima a derivação termo a termo, a equação do calor

$$u_{xx} = \frac{a_0}{2} (u_0)_{xx} + \sum_{n=1}^{\infty} a_n (u_n)_{xx}$$

$$= -\sum_{n=1}^{\infty} n^2 a_n u_n$$

$$= \frac{a_0}{2} (u_0)_t + \sum_{n=1}^{\infty} a_n (u_n)_t = u_t ,$$

em R e condições de fronteira

$$u_x(t,0) = \frac{a_0}{2}(u_0)_x(t,0) + \sum_{n=1}^{\infty} a_n (u_n)_x(t,0) = 0,$$

$$u_x(0,\pi) = \frac{a_0}{2} (u_0)_x (t,\pi) + \sum_{i=1}^{\infty} a_i (u_i)_x (t,\pi) = 0, \quad t > 0$$

Em particular, u(t,x) satisfaz em t=0,

$$u(0,x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx = f(x)$$
.

3. O método de Fourier de separação de variaveis consiste em procurar soluções das equações homogêneas $u_t - u_{xx} = 0$ e $u_x(t,0) = u_x(t,\pi) = 0$ na forma produto

$$u(t,x) = T(t) X(x) . (2)$$

Substituindo na equação do calor, obtemos

$$\frac{X''}{X} = \frac{T'}{T} = \sigma = -\lambda^2$$

com λ real, e a equação à derivadas parciais (juntamente com as condições de fronteira) é reduzida a um par de equações diferenciais ordinárias:

$$X'' + \lambda^2 X = 0$$
, $0 < x < \pi$ (3)

 $com X'(0) = X'(\pi) = 0 e$

$$T' + \lambda^2 T = 0 . (4)$$

Resolvemos primeiramente o problema de autovalores: encontrar todas as soluções da equação (3) sujeita as condições nas duas extremidades do intervalo $(0,\pi)$. A solução geral de (3)

$$X(x) = A\cos\lambda x + B\sin\lambda x$$

juntamente com

$$X'(0) = \lambda B = 0$$

$$X'(\pi) = \lambda A \sin \lambda \pi = 0$$

determinam os pares de autovalores/autofunções do problema: para $\lambda = 0$ temos $X_0(x) = 1$ e para $\lambda = n \in \mathbb{N}$ temos $X_n(x) = \cos nx$. A solução geral da equação (4) é

$$T(t) = Ce^{-\lambda^2 t}$$

e o produto (2) reproduz, tomando a constante C=1, a coleção de soluções das equações homogêneas sugerida no ítem 1:

$$u_0(t,x) = 1$$

$$u_n(t,x) = e^{-n^2 t} \cos nx$$
, $n = 1, 2, ...$

A resolução das equações em $\bar{R} = \{(t,x) : t \geq 0, 0 \leq x \leq \pi\}$, incluindo a condição não homogênea em t = 0, segue do ítem 2.

¹Como as equações são homogêneas, as autofunções são determinadas a menos de uma constante multiplicativa, a qual fixamos, por simplicidade, igual a 1.