Mec 2Sem2015 - Teste #1

Nome:	NUSP:

Você tem até 30 ± 5 minutos para fazer este teste. Resolva o exercício de maneira organizada (escreva definições que considerar importantes e justifique seus cálculos). Bom trabalho.

1 Trajetórias no sistema cartesiano I

Considere o seguinte vetor posição de uma partícula de massa m no sistema cartesiano:

$$\vec{r}(t) = 2b\sin\omega t\hat{i} + b\cos\omega t\hat{j}$$

(a) Faça um esboço da trajetória associada a $\vec{r}(t)$ para t no intervalo $0 \le t \le 2\pi/\omega$. Não deixe de anotar no seu esboço os parâmetros 2b e b.

(2.0 pontos)

O esboço deve conter uma trajetória fechada, de aparência elíptica (1.0 pontos), onde se mostra corretamente o b ao longo de y e 2b ao longo de x (1.0 pontos).

(b) Determine os vetores \vec{v} e \vec{a} . Mostre que $\vec{a} = -\omega^2 \vec{r}$. No contexto deste resultado, discuta o ângulo entre \vec{a} e \vec{r} ao longo da trajetória.

(2.0 pontos)

Cálculo dos vetores (1.0 pontos): o vetor velocidade se escreve $\vec{v} = d\vec{r}/dt$ (0.1 pontos), e calculamos:

$$\vec{v}(t) = 2b\omega\cos\omega t\hat{i} - b\omega\sin\omega t\hat{j}$$

(0.4 pontos). Já o vetor aceleração $\vec{a} = d^2 \vec{r}/dt^2$ (0.1 pontos). E calculamos:

$$\vec{a}(t) = -2b\omega^2 \sin \omega t \hat{i} - b\omega^2 \cos \omega t \hat{j}$$

(0.4 pontos).

Notamos que: $\vec{a} = -\omega^2 [2b\sin\omega t \hat{i} + b\cos\omega t \hat{j}] = -\omega^2 \vec{r}(t)$ (0.25 pontos), portanto \vec{a} é antiparalelo a \vec{r} ao longo de toda trajetória (0.5 pontos), decorre que o ângulo entre \vec{a} e \vec{r} é π (0.25 pontos).

(c) Determine explicitamente os instantes de tempo, no intervalo $0 \le t \le 2\pi/\omega$, nos quais \vec{v} e \vec{a} são perpendiculares.

(3.0 pontos)

Os vetores \vec{v} e \vec{a} são perpendiculares quando $\vec{v}.\vec{a}=0$ (1.0 pontos). Trabalhando o produto escalar temos:

$$\vec{v} \cdot \vec{a} = (2b\omega)(-2b\omega^2)\cos\omega t\sin\omega t + (-b\omega)(-b\omega^2)\sin\omega t\cos\omega t$$

$$=-3b^2\omega^3\cos\omega t\sin\omega t$$

- (0.5 pontos, -0.25 pontos para erros de conta). Analisando a parte dependente do tempo, vemos que o produto escalar é 0 nos instantes: $\omega t = 0$, $= \pi/2$, $= \pi, = 3\pi/2$ e $= 2\pi$ (1.5 pontos, não limitou n par ao intervalo pedido -0.25 pontos).
- (d) Ilustre os vetores \vec{r} , \vec{v} e \vec{a} nos instantes de tempo encontrados no item (c). Discuta a direção do vetor $\vec{r} \times m\vec{v}$ ao longo da trajetória.

(3.0 pontos)

Representa-se os vetores \vec{r} , \vec{v} e \vec{a} nos quatro pontos nos eixos (1.0 pontos, -0.25 se não ilustrou para todos os pontos), com \vec{r} sempre apontado da origem para a partícula (0.5 pontos), \vec{a} sempre apontando da partícula para a origem (0.5 pontos) e \vec{v} , a partir da partícula, indicando que a partícula se movimenta no sentido horário (0.5 pontos). Pela representação dos vetores e a regra da mão direita, percebe-se que $\vec{r} \times m\vec{v}$ está na direção $-\hat{k}$ (0.5 pontos).