Mec 2Sem 2015 - Teste #5

Nome:	NUSP:

Você tem até 30 ± 5 minutos para fazer este teste. Resolva o exercício de maneira organizada (escreva definições que considerar importantes e justifique seus cálculos). Bom trabalho.

1 Termo cúbico na gravitação

Considere que o termo gravitacional é acrescido de uma pequena perturbação cúbica, de maneira que a componente de força se escreve:

$$f(r) = -\frac{k}{r^2} - \frac{\lambda}{r^3}$$

com k e λ maiores que 0 e $|\lambda| \ll L_z^2/\mu$. Considere a equação para a trajetória orbital devido a forças centrais (veja no formulário abaixo).

(a) Calcule f(1/u), resolva a equação da órbita para encontrar $u(\phi) = 1/r(\phi)$ (solução geral apenas). Fixe o sistema de coordenadas de maneira que $\phi_0 = 0$.

(2.5 pontos)

Escrevemos f(1/u):

$$f(1/u) = -ku^2 - \lambda u^3$$

(0.5 pontos). Usamos a equação da órbita:

$$\frac{d^2 u(\phi)}{d\phi^2} + u = -\frac{\mu}{L_z^2 u^2} [-ku^2 - \lambda u^3]$$

$$\frac{d^2u(\phi)}{d\phi^2} + (1 - \frac{\mu\lambda}{L_z^2})u = \frac{\mu k}{L_z^2}$$

(1.0 pontos). A solução geral é obtida reconhecendo *a famosa equação* para o oscilador harmônico com um termo constante:

$$u(\phi) = A\cos(\beta[\phi + \phi_0]) + \frac{\mu k}{L_z^2 \beta^2}$$

onde definimos:

$$\beta^2 = (1 - \frac{\mu\lambda}{L_z^2})$$

Ajustando o sistema do coordenadas, temos:

$$u(\phi) = \frac{1}{r(\phi)} = A\cos(\beta\phi) + \frac{\mu k}{L_z^2 \beta^2}$$

- $(1.0 \text{ pontos}, -0.25 \text{ para quem não ajustou o sistema de coordenadas}, -0.5 \text{ para quem não colocou o termo constante e} -0.25 \text{ para quem errou o } \beta^2).$
- (b) Qual o período angular de $r(\phi)$ (ou seja, de quanto deve mudar ϕ para que $r(\phi)$ tenha um período)? Necessariamente, use a aproximação $(1+x)^n \approx 1 + nx$ (para $x \ll 1$) e deixe sua resposta em primeira ordem em λ .

(2.5 pontos)

O período angular é dado por $T=2\pi/\beta$, desta maneira:

$$T = \frac{2\pi}{(1 - \frac{\mu\lambda}{L^2})^{1/2}}$$

(0.5 pontos). Notamos que:

$$\frac{\mu\lambda}{L_z^2} \ll 1$$

(0.5 pontos, tem que constar!) de maneira que, dado a famosa aproximação $(1+x)^n \approx 1+nx$, temos:

$$T \approx 2\pi (1 + \frac{\mu \lambda}{2L_z^2})$$

(1.5 pontos, algum erro algébrico -0.5 pontos).

(c) Determine o avanço angular ($\Delta \phi$) dos apsidais da órbita (o avanço angular é o período angular de $r(\phi)$ subtraído de 2π). Qual o sentido de rotação para a precessão da órbita para o presente caso ($\lambda > 0$)?

(2.5 pontos)

O avanço angular se escreve:

$$\Delta \phi = T - 2\pi \approx \frac{\mu \lambda}{L_z^2} \pi$$

(1.0 pontos). Uma vez que $\Delta \phi > 0$, temos que a órbita precessa no sentido anti-horário (1.5 pontos). A conclusão deve ser coerente com o sinal do resultado! Pode-se também argumentar que dado que o período angular é maior que 2π , a precessão é no sentido anti-horário (1.5 pontos).

(d) Considere $m_1 = M$, $m_2 = m$ (onde $M \gg m$) e faça um esquema da situação: esboce a forma geométrica aproximada desta órbita, indique as posições das partículas de massa M (centro da força) e m e indique $\Delta \phi$.

(2.5 pontos)

Elementos que serão avaliados: uma vez que $\beta \approx 1$, a órbita permanece similar a uma elipse (0.75 pontos), com a massa M claramente em um dos focos (0.75 pontos, -0.25 se houver margem para dúvida na posição de M) e $\Delta \phi$ deve ser estar indicada para revoluções consecutivas (1.0 pontos)

Dados:

Equação da órbita:

$$\frac{d^2 u(\phi)}{d\phi^2} + u = -\frac{\mu}{L_z^2 u^2} f(1/u)$$

onde $u(\phi) = 1/r(\phi)$

Aproximação importante:

$$(1+x)^n \approx 1 + nx$$

Termo cúbico na gravitação