MAC 239 – Introdução aos Métodos Formais 1a. Prova, segundo semestre de 2013

NOME:		
NUSP:		

Recomendações Gerais:

- 1. prova individual e com consulta vedada a apontamentos e colegas;
- 2. duração da prova = uma hora e cinqüenta minutos;
- 3. conteúdo da prova = quatro questões e duas folhas de "dicas" verifique antes do início da prova se seu caderno de questões está completo;
- 4. não podem ser utilizadas folhas avulsas e as folhas desse caderno não podem ser destacadas; utilize o verso das páginas se necessário;
- 5. a compreensão dos enunciados faz parte da prova.
- 6. VÁ BEM NESTA PROVA!!!

questão	valor	nota
1	3.0	
2	2.0	
3	3.0	
4	2.0	

LEMBRETECA DE RECORDÁRIOS

Regras de expansão de tableaux semânticos

Tipo	Fórmula	Expansão 1	Expansão 2
α	$VA \wedge B$	VA	VB
α	$FA \vee B$	FA	FB
α	$FA \rightarrow B$	VA	FB
α	$V \neg A$	FA	
α	$F \neg A$	VA	
β	$VA \vee B$	VA	VB
β	$FA \wedge B$	FA	FB
β	$VA \to B$	FA	VB

Regras de expansão de tableaux KE Regras α + regras de duas premissas:

$$\begin{array}{ccc}
VA \lor B & VA \lor B \\
\hline
FA & VB & VA & FB \\
\hline
VA & VB & VA & VA
\end{array}$$

$$\begin{array}{cccc}
VA \to B & VA \to B & FB \\
\hline
VA & VB & VA & VA
\end{array}$$

$$\begin{array}{cccc}
VA \to B & FB & VA \to B \\
\hline
FA & VB & VA & VA
\end{array}$$

$$\begin{array}{cccc}
FA \land B & FA \land B & VA & VB \\
\hline
VA & FB & VA & VB & VB
\end{array}$$

$$\begin{array}{cccc}
VA & VB & VB & VB & VB & VB
\end{array}$$

Regras de Dedução Natural:

$\frac{A B}{A \wedge B, \Gamma \vdash \Delta} (\wedge I)$	$\frac{A \wedge B}{A} (\wedge E_1) \frac{A \wedge B}{B} (\wedge E_2)$
$\frac{A}{A \vee B} \ (\vee I_1) \ \frac{B}{A \vee B} \ (\vee I_2)$	$ \begin{array}{ccc} A & B \\ \vdots & \vdots \\ A \lor B & C & C \\ \hline C & & (\lor E) \end{array} $
$ \begin{array}{c} A \\ \vdots \\ B \\ A \to B \end{array} (\to I) $	$\frac{A \to B A}{B} (\to E)$
$\begin{matrix} A \\ \vdots \\ \frac{\perp}{\neg A} \ (\neg I) \end{matrix}$	$\frac{\neg A A}{\bot} (\neg E)$
$(\bot I) = (\neg E)$	$\frac{\perp}{A} \; (\perp E)$
	$\frac{\neg \neg A}{A}(\neg \neg E)$

Questão 1: (3 pontos)

Decidir se as seguintes fórmulas são válidas, satisfazíveis ou insatisfazíveis, pelo método que achar mais conveniente. Indicar claramente seu julgamento.

- (a) $[p \to (q \to (r \lor s))] \to [(p \to q) \to ((p \to s) \lor (p \to r))];$
- (b) $((p \rightarrow q) \rightarrow p) \rightarrow q$

Verificar se A e B são logicamente equivalentes, dando a tabela da verdade. Nota: $v(A \leftrightarrow B) = 1$ sse v(A) = v(B).

- (c) $A = p \leftrightarrow (q \leftrightarrow r)$ e $B = (p \leftrightarrow q) \leftrightarrow r$.
- (a) Pelo tableau KE, vemos que a fórmula é um teorema e, pela correção do método, válida.
 - (a) $F[p \to (q \to (r \lor s))] \to [(p \to q) \to ((p \to s) \lor (p \to r))]$ dado
 - (b) $V p \to (q \to (r \lor s))$ $(F \to) \text{ em } 1$
 - (c) $F(p \to q) \to ((p \to s) \lor (p \to r)), (F \to) \text{ em } 1$
 - (d) $V p \rightarrow q$ $(F \rightarrow) \text{ em } 3$
 - (e) $F(p \to s) \lor (p \to r)$ $(F \to) \text{ em } 3$
 - (f) $F(p \to s)$ $(F \lor) \text{ em } 5$
 - (g) $F(p \to r)$ $(F \lor) \text{ em 5}$
 - (h) V p ($F \rightarrow$) em 6
 - (i) F s ($F \rightarrow$) em 6
 - (j) V p ($F \rightarrow$) em 7
 - (k) F r $(F \rightarrow) \text{ em } 7$
 - (1) V q $(T \rightarrow) \text{ em } 8, 4$
 - (m) $V q \rightarrow (r \lor s)$ ($T \rightarrow$) em 8, 2
 - (n) $V r \vee s$ ($T \rightarrow$) em 12, 13
 - (o) V s $(T \lor) \text{ em } 11, 14$
 - $(p) \times 9, 15$
- (b) Falsificável com v(p) = 1 e v(q) = 0.

(c) Equivalente pelo método da tabela da verdade.

p	q	r	$q \leftrightarrow r$	$p \leftrightarrow q$	A	$\mid B \mid$
0	0	0	1	1	0	0
0	0	1	0	1	1	1
0	1	0	0	0	1	1
0	1	1	1	0	0	0
1	0	0	1	0	1	1
1	0	1	0	0	0	0
1	1	0	0	1	0	0
1	1	1	1	1	1	1

Como as duas últimas colunas são iguais, $A\equiv B.$

Questão 2: (2 pontos)

Determinar se os seqüentes abaixo são válidos ou não pelo *método dos tableaux KE*. Em caso positivo, dar TAMBÉM uma prova pelo método de Dedução Natural; caso contrário, exibir um valoração que refuta o seqüente.

(a)
$$p \to (q \lor r), q \to s, r \to s, p \vdash s;$$

(b)
$$A \vdash B$$
 onde $A = p_{00} \lor p_{01} \lor p_{02}$ e $B = (p_{00} \to (\neg p_{01} \land \neg p_{02})) \land p_{10} \lor p_{11} \lor p_{12}$ $(p_{10} \to (\neg p_{11} \land \neg p_{12}))$

(a) Pelo tableau KE:

1.
$$V p \rightarrow (q \vee r)$$

2.
$$V q \rightarrow s$$

3.
$$V r \rightarrow s$$

Dedução natural:

$$\frac{p \to (q \lor r)}{q \lor r} (\to E) \qquad \frac{[q]^1 \quad q \to s}{s} (\to E) \qquad \frac{[r]^2 \quad r \to s}{s} (\to E)$$

(b) Expandindo o tableau KE, nota-se um ramo aberto e saturado com V p_{00}, V p_{10}, F p_{01}, V p_{02}, F p_{11}, V p_{12} .

Questão 3: (3 pontos)

Foi roubada uma importante quantia de dinheiro. A Polícia Federal decide interrogar a três suspeitos, André, Bento e Carlos, e consegue determinar diversos fatos.

- (a) No roubo não está implicada nenhuma outra pessoa salvo André, Bento e Carlos.
- (b) O criminoso (ou criminosos) fugiu/fugiram num carro.
- (c) Carlos nunca trabalha sem levar André (e eventualmente outros) como cúmplice.
- (d) Bento não sabe dirigir um carro.

Considerando estas afirmações, expressar em lógica proposicional clássica uma fórmula que codifica as informações apresentadas por estes fatos.

Pergunta: André é culpado ou pode ser inocente? Justificar formalmente sua resposta.

Vamos modelar a situação descrita acima da seguinte maneira.

A: André é criminoso

B: Bento é criminoso

C: Carlos é criminoso

D: sabe Dirigir o carro

Logo, André é um dos criminosos.

Questão 4: (2 pontos)

Coloque a fórmula $A \wedge \neg B$ na forma normal conjuntiva, onde:

$$A = p_{00} \lor p_{01} \lor p_{02} \qquad e \qquad B = (p_{00} \to (\neg p_{01} \land \neg p_{02})) \land .$$
$$p_{10} \lor p_{11} \lor p_{12} \qquad (p_{10} \to (\neg p_{11} \land \neg p_{12}))$$

A fórmula A já está no formato clausal, podemos nos concentrar apenas em por a fórmula $\neg B$ numa equivalente clausal B'; a resposta sera $A \wedge B'$.

$$B = \neg((p_{00} \to (\neg p_{01} \land \neg p_{02})) \land (p_{10} \to (\neg p_{11} \land \neg p_{12})))$$

$$\equiv (p_{00} \land (p_{01} \lor p_{02})) \lor (p_{10} \land (p_{11} \lor p_{12}))$$

$$\equiv (p_{00} \land p_{01}) \lor (p_{00} \land p_{02}) \lor (p_{10} \land p_{11}) \lor (p_{10} \land p_{12})$$

$$= B'$$

Neste ponto introduzimos 4 novos átomos:

$$q_1 \leftrightarrow (p_{00} \land p_{01})$$

$$q_2 \leftrightarrow (p_{00} \land p_{02})$$

$$q_3 \leftrightarrow (p_{10} \land p_{11})$$

$$q_3 \leftrightarrow (p_{10} \land p_{12})$$

e obtemos

$$B' = q_1 \vee q_2 \vee q_3 \vee q_4$$
e também

$$Q = (\neg q_{1} \lor p_{00}) \land (\neg q_{1} \lor p_{01}) \land (q_{1} \lor \neg p_{00} \lor \neg p_{01}) \land (\neg q_{2} \lor p_{00}) \land (\neg q_{2} \lor p_{02}) \land (q_{2} \lor \neg p_{00} \lor \neg p_{02}) \land (\neg q_{3} \lor p_{10}) \land (\neg q_{3} \lor p_{11}) \land (q_{4} \lor \neg p_{10} \lor \neg p_{11}) \land (\neg q_{4} \lor p_{10}) \land (\neg q_{4} \lor p_{12}) \land (q_{4} \lor \neg p_{10} \lor \neg p_{12})$$

Assim, uma fórmula na forma normal conjuntiva equisatisfatível a $A \land \neg B$ é $A \land B' \land Q$.