MAC 239 – Introdução aos Métodos Formais 2a. Prova, segundo semestre de 2013

NOME:		
NUSP:		

Questão	Valor	Nota
1	2,5	
2	2,5	
3	2,5	
4	2,5	

Recomendações Gerais:

- 1. prova individual e com consulta vedada a apontamentos e colegas;
- 2. duração da prova = uma hora e cinqüenta minutos;
- 3. conteúdo da prova = quatro questões e duas folhas de "dicas" verifique antes do início da prova se seu caderno de questões está completo;
- 4. não podem ser utilizadas folhas avulsas e as folhas desse caderno não podem ser destacadas; utilize o verso das páginas se necessário;
- 5. a compreensão dos enunciados faz parte da prova.
- 6. BOA SORTE !!!

LEMBRETECA DE RECORDÁRIOS

Regras de expansão de tableaux semânticos

Tipo	Fórmula	Expansão 1	Expansão 2
α	$VA \wedge B$	VA	VB
α	$FA \lor B$	FA	FB
α	$FA \rightarrow B$	VA	FB
α	$V \neg A$	FA	
α	$F \neg A$	VA	
β	$VA \lor B$	VA	VB
β	$FA \wedge B$	FA	FB
β	$VA \rightarrow B$	FA	VB
γ	$V \forall x P(x)$	VP(t)	
γ	$F\exists x P(x)$	FP(t)	
δ	$V \exists x P(x)$	VP(a)	a novo
δ	$F \forall x P(x)$	FP(a)	a novo

Regras de expansão de tableaux KERegras α + regras de duas premissas:

$$\begin{array}{ccc}
VA \lor B & VA \lor B \\
FA & VB & VA & FB \\
\hline
VA & VB & VA & VA
\end{array}$$

$$\begin{array}{cccc}
VA \to B & VA \to B & FB \\
\hline
VA & VB & VA & FB
\end{array}$$

$$\begin{array}{cccc}
VA \to B & FB & VA \to B \\
\hline
FA & VB & VA & VB & VA
\end{array}$$

$$\begin{array}{cccc}
FA \land B & FA \land B & VA & VB & VB & VB & VB
\end{array}$$

$$\begin{array}{cccc}
VA & VB & VB & VB & VB & VB & VB
\end{array}$$

Regras de Dedução Natural:

$\frac{A B}{A \wedge B, \Gamma \vdash \Delta} (\wedge I)$	$\frac{A \wedge B}{A} (\wedge E_1) \frac{A \wedge B}{B} (\wedge E_2)$
	$\begin{array}{cccc} & A & B \\ & \vdots & \vdots \\ & A \lor B & C & C \\ \hline & C & & \\ \hline \end{array} (\lor E)$
$\begin{array}{c} A \\ \vdots \\ \frac{B}{A \to B} \end{array} (\to I)$	$\frac{A \to B A}{B} (\to E)$
$ \begin{array}{c} A \\ \vdots \\ \frac{\perp}{\neg A} \ (\neg I) \end{array} $	$\frac{\neg A A}{\bot} \ (\neg E)$
$(\bot I) = (\neg E)$	$\frac{\perp}{A} \; (\perp E)$
	$\frac{\neg \neg A}{A}(\neg \neg E)$
$x_0 : -$ \vdots $\frac{P(x_0)}{\forall x P(x)} \ (\forall I)$	$\frac{\forall x P(x)}{P(t)} (\forall E)$
$\frac{P(t)}{\exists x P(x)} \ (\exists I)$	$ \begin{array}{ccc} x_0 : P(x_0) \\ \vdots \\ C \end{array} $ $ \begin{array}{ccc} \exists x P(x) & C \\ \hline \end{array} (\exists E) $

Questão 1: (2,5 pontos)

Determinar se os seqüentes abaixo são válidos ou não pelo $m\'{e}todo~dos$ $tableaux~sem\^anticos~ou~KE.$ Em caso negativo, exibir um contra-modelo.

- (a) $\exists x \forall y (\neg p(x) \lor q(y)) \vdash \forall x p(x) \rightarrow \forall y q(y);$
- (b) $\forall x \, p(x) \to q(a), \neg \forall x \, p(x) \vdash \neg q(a).$

Questão 2: (2,5 pontos)

- (a) Dar uma assinatura de primeira ordem e expressar as seguintes sentenças:
 - Todo mundo ou é egoísta ou é altruísta.
 - Todo altruístas gosta de sua mãe.
 - Egoístas gostam de si mesmos.
- (b) Expressar as seguintes sentenças
 - Todo altruísta gosta de alguém
 - Todo egoísta gosta de alguém
 - Todo mundo gosta de alguém.

e prová-las pelo método da Dedução Natural a partir das sentenças do item (a)

Questão 3: (2,5 pontos)

Os termos de uma progressão aritmética (PA) de termo inicial a_1 e razão r são dados por:

$$a_n = a_1 + (n-1) \times n,$$

e a soma dos n primeiros termos da PA é dada por:

$$S_n = \frac{a_n + a_1}{2} \times r.$$

Mostrar que o programa abaixo calcula a soma dos N primeiros termos de uma PA de razão r. Assumir que $\mathtt{a1}$, an, \mathtt{r} e \mathtt{N} são números inteiros. Não é necessário se demonstrar que o programa sempre para.

OBS: Salientar qual o invariante da iteração do programa e a pré- e pós-condições do programa.

 $Pr\'e-condiç\~ao$:

```
soma = 0;

i = 0;

an = a1;

//Invariante:
while (i < N) do

soma = soma + an;

an = an + r;

i = i + 1;</pre>
```

od

Pós-condição:

Questão 4: (2,5 pontos)

A expansão da função sen(x) pela fórmula de Taylor é dada por:

$$\operatorname{sen}(x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$

O programa seguinte computa o valor do seno, dentro de uma certa precisão, onde 0 < PRECISAO < 1, calculando um dos termos da fórmula de Taylor de cada vez. Se t_i é o valor do termo no início da iteração i, então $t_{i+1} = -1 \times t_i \times \frac{x}{2i} \times \frac{x}{2i+1}$. Isto gera o seguinte programa, onde todas as variáveis são reais, a menos de i, que é inteira:

```
seno = 0;
i = 1;
ti = x;
while( |ti| > PRECISAO ) do
    seno = seno + ti;

/* Cálculo de t(i+1) */
    aux1 = x/(2*i);
    aux2 = x/(2*i+1);
    ti = -1 * ti * aux1 * aux2;
    i = i + 1;
od
```

Pede-se mostrar que o programa sempre termina, mas infelizmente não é verdade que $\forall i(|t_{i+1}| < |t_i|)$. Desta forma, proceder da seguinte maneira para construir a expressão variante da iteração:

- (a) Dar uma expressão formal de lógica de primeira ordem que expressa que existe uma iteração I_0 a partir da qual o valor de $|t_i|$ sempre decresce.
- (b) Encontrar o valor de tal iteração I_0 como função de x a partir da qual o valor absoluto do termo sempre decai. (Dica: este valor ocorre quando $\mathtt{aux1} < 1$).
- (c) Definir uma expressão variante E(i) apropriada, definida para $i \geq I_0$ e sempre decrescente.
- (d) Mostrar que existe um $i \geq I_0$ tal que $E(i) \leq 0$. Concluir que o programa sempre pára.