BMA+BMAC / IME / USP - MAC-315 - Gabarito da Primeira Prova

Nome:	Assinatura:	No USP: [] [] [] [
		i i k

Instruções: Os valores de i, j e k na questão 1 são os três últimos dígitos do seu número USP. Você deve substituí-los antes de resolver esta questão.

Atenção: enuncie todas as definições ou resultados utilizados (por exemplo $x_B = B^{-1}b$, $\bar{c}_i = c_i - c_B' B^{-1} A^j$, $d_B = -B^{-1} A^j$, etc).

Questão 1 (2+2 pontos) Modele os seguintes problemas usando programação linear, explicando o significado de cada variável e cada restrição introduzida no modelo. Você não precisa resolver os problemas.

a) Um mestre cervejeiro deseja produzir dois tipos de cerveja: clara e escura. Para isso ele dispõe de um estoque de malte, lúpulo e levedura, nas quantidades de 75 kg, 60 kg e 50 kg, respectivamente. Suas receitas para produção de cerveja especificam que cada barril de cerveja clara requer 2 kg de malte, 3 kg de lúpulo e 2 kg de levedura, enquanto o barril de cerveja escura requer 3 kg de malte, 1 kg de lúpulo e 2 kg de levedura. Considerando que cada barril de cerveja clara é vendido a R\$ 8.000,00 e cada barril de cerveja escura é vendido a R\$ 7.000,00, ajude o mestre cervejeiro a maximizar sua receita (supondo que ele consiga vender toda a cerveja que produzir).

O problema do cervejeiro é uma instância em particular do problema de produção das notas de aula, e consiste em determinar as quantidades de barris de cerveja clara (x_1) e escura (x_2) que deve produzir, sendo portanto essas as suas variáveis de decisão. As receitas trazem as quantidades de cada matéria-prima (malte, lúpulo e levedura) necessária para cada barril de cada tipo de cerveja (supostamente a água nesse exemplo não custaria nada e estaria disponível em quantidade ilimitada): assim a produção das quantidades x_1 e x_2 de barris dos dois tipos de cerveja consumirá $2x_1 + 3x_2$ kg de malte, $3x_1 + x_2$ kg de lúpulo e $2x_1 + 2x_2$ kg de levedura, valores estes restritos aos estoques disponíveis (de 75, 60 e 50 kg respectivamente). O objetivo do cervejeiro é maximizar o dinheiro arrecadado, que corresponde à expressão $8000x_1 + 7000x_2$. Logo o modelo de programação linear será

$$\begin{cases} \max & 8000x_1 + 7000x_2 \\ s.a & 2x_1 + 3x_2 \le 75 \\ & 3x_1 + x_2 \le 60 \\ & 2x_1 + 2x_2 \le 50 \\ & x_1, x_2 \ge 0 \end{cases}$$

b) Um produtor musical precisa planejar um show para uma banda, e isso depende da articulação de várias atividades, cada uma das quais requer um certo tempo para executar: A = encontrar lugar para o show (3 dias), B = encontrar um engenheiro de som (2 dias), C = contratar uma banda de abertura (6 dias), D = preparar propagandas em rádio, TV e web (2 dias), E = preparar o sistema de bilheteria (3 dias), F = alugar/preparar equipamento de som (3 dias), G = imprimir cartazes e flyers (5 dias), H = preparar transporte (1 dia), I = ensaios (2 dias), J = detalhes de última hora (2 dias). Algumas atividades podem ser feitas em paralelo, porém algumas atividades

são pré-requisitos de outras: A precisa ser concluída antes de B, C e E; B precisa ser concluída antes de F; C precisa ser concluída antes de D, G e H; F e H precisam ambas ser concluídas antes de I; e I precisa ser concluída antes de J. Ajude o produtor musical a estimar o tempo mínimo necessário para executar seu planejamento. Dica: considere como variáveis de decisão o início de cada uma das 10 atividades planejadas.

O tempo necessário é dado pela diferença entre o instante do fim da última tarefa e o início da primeira tarefa; podemos usar tempos relativos ao início, assim a primeira tarefa será iniciada no instante 0 e a última tarefa terminará no instante T que desejamos minimizar. As restrições que correspondem às atividades pré-requisito podem ser escritas usando as variáveis T_X ($X \in \{A, B, ..., J\}$) que representam o instante de início da atividade X e as durações d_X conhecidas para essas atividades. Assim por exemplo a restrição de que A (que inicia em T_A e dura $d_A = 3$ dias) precisa ser concluída antes de B, C e E será representada pelas três restrições $T_A + 3 \le T_B$, $T_A + 3 \le T_C$ e $T_A + 3 \le T_E$, e analogamente para todas as condições similares. A variável T a ser minimizada está restrita por $T \ge T_X + d_X$, $\forall X$ onde $T_x + d_X$ são os instantes de fim das diversas atividades. Finalmente, nenhuma atividade pode iniciar antes do instante O ($T_x \ge 0$, $\forall X$). O modelo portanto será

$$\begin{cases} & \min \ T \\ s.a & T_A+3 \leq T_B, \ T_A+3 \leq T_C, \ T_A+3 \leq T_E, \ T_B+2 \leq T_F, \ T_C+6 \leq T_D, \\ & T_C+6 \leq T_G, \ T_C+6 \leq T_H, \ T_F+3 \leq T_I, \ T_H+1 \leq T_I, \ T_I+2 \leq T_J, \\ & T_A+3 \leq T, \ T_B+2 \leq T, \ T_C+6 \leq T, \ T_D+2 \leq T, \ T_E+3 \leq T, \\ & T_F+3 \leq T, \ T_G+5 \leq T, \ T_H+1 \leq T, \ T_I+2 \leq T, \ T_J+2 \leq T \\ & T_A \geq 0, \ T_B \geq 0, \ T_C \geq 0, \ T_D \geq 0, \ T_E \geq 0, \\ & T_F \geq 0, \ T_G \geq 0, \ T_H \geq 0, \ T_I \geq 0, \end{cases}$$

Questão 2 (6*0,5 pontos) Considere o problema de programação linear

1. Passe o problema acima para a forma canônica. Use x_4, x_5, \ldots para as variáveis novas introduzidas.

O problema na forma canônica fica

$$\begin{cases} \min & -x_1 & -x_2 & -x_3 \\ s.a & (k+1)x_1 & +(i+1)x_3 & +x_4 & = (i+1)(k+1) \\ & (k+1)x_2 & +(j+1)x_3 & +x_5 & = (j+1)(k+1) \\ & & x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

2. Construa a solução básica associada às variáveis básicas x_4 e x_5 .

A solução básica associada a x_4, x_5 deverá ter $x_1 = x_2 = x_3 = 0$ e resolver o sistema de equações reduzido às variáveis x_4, x_5 , cuja solução única será $x_4 = (i+1)(k+1)$ e $x_5 = (j+1)(k+1)$. Como $x_4, x_5 \ge 0$ esta solução básica é viável (um vértice).

3. Compute os custos reduzidos \bar{c}_j e use-os para dizer se a solução do item 2 é ou não ótima.

Sabemos que $\bar{c}_4 = \bar{c}_5 = 0$ pois estas são as variáveis básicas. Para as demais, calculando $p' = c'_B B^{-1} = \begin{bmatrix} 0 & 0 \end{bmatrix} I = 0$ teremos $\bar{c}_i = c_i$ para i = 1, 2, 3, ou seja, $\bar{c}' = (-1, -1, -1, 0, 0)$. Como $\bar{c} \ngeq 0$ temos que a solução do item 2 não é ótima.

4. Construa a direção básica d associada à entrada da variável x_1 na base.

Essa direção d é definida pelas condições $d_1 = 1$ (variável a entrar na base), $d_2 = d_3 = 0$ (demais variáveis que permanecerão não-básicas) e $d_B = \begin{bmatrix} d_4 \\ d_5 \end{bmatrix} = -B^{-1}A^1 = -I\begin{bmatrix} k+1 \\ 0 \end{bmatrix} = \begin{bmatrix} -k-1 \\ 0 \end{bmatrix}$.

5. Calcule (pela fórmula ou por construção direta) o maior tamanho de passo θ^* possível a partir da solução do item 2 na direção do item 4, bem como a nova solução $x + \theta^*d$.

O maior θ^* possível será obtido no ponto da semi-reta $x + \theta d$ em que a variável $x_{b_1} = x_4$ se anula, ou seja, quando $x_4 + \theta^* d_4 = (i+1)(k+1) + \theta^* (-k-1) = 0 \iff \theta^* = (i+1)$. A nova solução será $x + \theta^* d = (0,0,0,(i+1)(k+1),(j+1)(k+1))' + (i+1)*(1,0,0,-k-1,0)' = (i+1,0,0,0,(j+1)(k+1))'$.

6. Mostre que a solução do item 5 é adjacente à do item 2.

A adjacência pode ser vista tanto pela presença de n-1=4 restrições ativas l.i. comuns $(x_2=0,x_3=0$ além das duas restrições do sistema Ax=b) como através da adjacência das bases que correspondem às soluções (a solução do item 2 está associada à base $\{4,5\}$ e a do item 5 à base $\{1,5\}$, que possuem m-1=1 índice em comum).

3

Questão 3 (0,5+0,5+2 pontos) Sendo $X \subseteq \mathbb{R}^n$, denote por $\mathcal{C}(X)$ o casco convexo de X, definido como

$$C(X) = \left\{ \sum_{i=1}^{K} \lambda_i x^i \middle| K \in \mathbb{N}, \ x^i \in X, \ \lambda_i \ge 0, \sum_{i=1}^{K} \lambda_i = 1 \right\}$$

Sendo $X, Y \subseteq \mathbb{R}^n$ quaisquer, mostre que

1. $X \subseteq \mathcal{C}(X)$

Basta notar que para qualquer $x \in X$ temos $x = \sum_{i=1}^K \lambda_i x^i$ fazendo K = 1, $x^1 = x$ e $\lambda_1 = 1$, de onde $x \in C(X)$.

2. se $X \subseteq Y$ então $\mathcal{C}(X) \subseteq \mathcal{C}(Y)$

Seja $x = \sum_{i=1}^K \lambda_i x^i \in \mathcal{C}(X)$ qualquer; como $x^i \in X \subseteq Y$, segue que $x = \sum_{i=1}^K \lambda_i x^i \in \mathcal{C}(Y)$, o que prova a inclusão.

3. C(C(X)) = C(X)

Por (1) e (2) segue imediatamente que $C(C(X)) \supseteq C(X)$. Para provar a inclusão contrária, considere $x \in C(C(X))$ qualquer; queremos mostrar que $x \in C(X)$. Pela definição, $x = \sum_{i=1}^{K} \lambda_i x^i$ para $K \in \mathbb{N}$, $x^i \in C(X)$, $\lambda_i \ge 0$, $\sum_{i=1}^{K} \lambda_i = 1$. Cada $x^i \in C(X)$ por sua vez pode ser escrito como $x^i = \sum_{j=1}^{K_i} \lambda_{i_j} x^{i_j}$ para $K_i \in \mathbb{N}$, $x^{i_j} \in X$, $\lambda_{i_j} \ge 0$, $\sum_{j=1}^{K_i} \lambda_{i_j} = 1$. Assim,

$$x = \sum_{i=1}^{K} \lambda_i x^i = \sum_{i=1}^{K} \lambda_i \sum_{j=1}^{K_i} \lambda_{i_j} x^{i_j} = \sum_{i=1}^{K} \sum_{j=1}^{K_i} \lambda_i \lambda_{i_j} x^{i_j},$$

mostrando que x é uma combinação linear de $\sum_{i=1}^{K} K_i$ elementos $x^{ij} \in X$. Além disso $\lambda_i \lambda_{ij} \geq 0$, $\forall i, j$ e

$$\sum_{i=1}^{K} \sum_{j=1}^{K_i} \lambda_i \lambda_{i_j} = \sum_{i=1}^{K} \lambda_i \left(\sum_{j=1}^{K_i} \lambda_{i_j} \right) = \sum_{i=1}^{K} \lambda_i * 1 = 1,$$

o que mostra que x é uma combinação convexa de elementos de X, de onde $x \in \mathcal{C}(X)$. Isso mostra que $\mathcal{C}(\mathcal{C}(X)) \subseteq \mathcal{C}(X)$, completando a prova.