2^a Prova de Introdução à Álgebra Linear MAT-134

Profa. Iryna Kashuba

22/10/2015

Turma A

- 1. $(2,0\ ponto)$ Determine se a afirmação é verdadeira ou falsa, justificando sua resposta.
- a) Para quaisquer vetores v e u num espaço vetorial com produto interno V

$$||u||^2 = ||v||^2 \iff \langle u + v, u - v \rangle = 0.$$

- b) Existe um espaço vetorial real consistindo em exatamente dois vetores distintos.
- 2. (2,0 pontos) Para cada par de vetores $u=(x_1,x_2)$ e $v=(y_1,y_2)$ de \mathbb{R}^2 defina

$$\langle u, v \rangle = 4x_1y_1 - 2x_1y_2 - 2x_2y_1 + 3y_2x_2.$$

Prove que \langle , \rangle é um produto interno em \mathbb{R}^2 . Ache todos os vetores da \mathbb{R}^2 que são ortogonais ao vetor (1,1).

-3. (2,0 pontos) Considere o espaço vetorial $M_2(\mathbb{R})$ e subconjunto de $M_2(\mathbb{R})$

$$W = \{A \in M_2(\mathbb{R}) \mid A \text{ comuta com a matriz } \begin{bmatrix} 2 & 2 \\ -2 & 3 \end{bmatrix} \}.$$

Mostre que W é um subespaço de $M_2(\mathbb{R})$. Ache uma base e dimensão de W.

- 4. $(2,0 \ pontos)$ Verifique se os dois conjuntos $S_1 = \{ \sin^2 t, \cos 2t \}$ e $S_2 = \{ 1, \cos^2 t \}$ geram o mesmo subespaço do subespaço vetorial $C(\mathbb{R})$ de funções contínuas.
- 5. (2,0 pontos) Seja $W = [v_1, \ldots, v_k]$ um subespaço num espaço vetorial V, tal que o conjunto $\{v_1, \ldots, v_k\}$ é linearmente dependente. Mostrar que W pode ser gerado por k-1 vetores $W = [u_1, u_2, \ldots, u_{k-1}]$.