USP - Universidade de São Paulo

IME - Instituto de Matemática e Estatística

Departamento de Matemática Aplicada

Disciplina: MAP 0216/MAT 0206/MAP 5706

Professor: Rodrigo Bissacot

PROVA 3.1

Aluna(o): N° USP: Data:22.01.2022

OBSERVAÇÕES:

VOCÊ SÓ PRECISA FAZER 7,0 PONTOS NA PROVA!!!!!

MAS CORRIGIREI TUDO QUE VOCÊ FIZER!!!

Entrega as 3h da manhã de sábado dia 23.01.2021.

Envio permitido até às 3:30 da manhã.

Horário de São Paulo.

Boa prova!

(1) (2 pontos)

Seja $(x_n)_{n\in\mathbb{N}}$ uma sequência de reais positivos. Prove que:

(a)
$$\liminf_{n\to\infty} \frac{x_{n+1}}{x_n} \le \liminf_{n\to\infty} \sqrt[n]{x_n}$$
.

(b) Mostre que
$$\lim_{n\to\infty} \frac{\sqrt[n]{n!}}{n} = \frac{1}{e}$$
.

(2) (2 pontos)

- (a) Sejam $X \subseteq \mathbb{R}$ e $f,g:X \to \mathbb{R}$ duas funções uniformente contínuas e limitadas. Mostre que a função produto $f.g:X \to \mathbb{R}$ é uniformemente contínua
- (b) Dê um exemplo de um conjunto X e duas funções $f,g:X\to\mathbb{R}$ uniformente contínuas tais que a função produto $f.g:X\to\mathbb{R}$ não é uniformemente contínua. Prove que seu exemplo de fato tem essa propriedade.

(3) (2 pontos)

Seja $f:[a,b]\to\mathbb{R}$ uma função contínua tal que existe $x_0\in[a,b]$ satisfazendo $f(x_0)\neq 0$. Mostre que $\int_a^b|f(x)|dx>0$.

(4) (2 pontos)

Definição 1. Seja $I = [a, b] \subseteq \mathbb{R}$ um intervalo fechado e seja $f : [a, b] \to \mathbb{R}$, para cada partição $\mathcal{P} = \{t_0 = a < t_1 < t_2 < ... < t_{n-1} < t_n = b\}$ definimos a variação de f referente a partição \mathcal{P} por $V(f; \mathcal{P}) = \sum_{i=1}^{n} |f(t_i) - f(t_{i-1})|$.

Diremos que f é uma função de variação limitada quando o supremo das variações sobre todas as partições possíveis é finito, ou seja:

$$\sup_{\mathcal{P}}\{V(f;\mathcal{P});\mathcal{P}\acute{e}\ partig\~{ao}\ de\ [a,b]\}=V_a^b(f)<\infty$$

Quando f for de variação limitada o número real $V_a^b(f)$ é chamado de variação de f no intervalo [a,b].

Seja $C^1([a,b]) = \{f : [a,b] \to \mathbb{R}; f \text{ \'e deriv\'avel e } f' \text{ \'e cont´ınua}\},$ mostramos em aula que toda função $f \in C^1([a,b])$ \'e Lipschitz.

- (a) Mostre que toda função é Lipschitz é de variação limitada. Conclua que toda função $f \in \mathcal{C}^1([a,b])$ é de variação limitada.
- (b) Mostre que se $f \in \mathcal{C}^1([a,b])$ então

$$V_a^b(f) = \int_a^b |f'(x)| dx.$$

- **(5)** (2 pontos)
 - (a) Seja $a \in X \cap X'_+$ e $f: X \to \mathbb{R}$ derivável à direita em a. Mostre que se $f'_+(a) < 0$ então existe $\delta > 0$ tal que se $x \in X \cap (a, a + \delta)$ então f(a) > f(x).
 - (b) Enuncie e prove o resultádo análogo para a derivada à esquerda.