${ m MAP0334/MAT0321}$ - Cálculo Diferencial

1a. Prova - Peso 1

Entrega: Até 06/05/2019 (2a. feira) às 19 horas

 $1^{\underline{O}}$ Semestre de 2019

REGRAS DO JOGO:

Na nota entrarão duas questões de cada parte.

BOA PROVA!

PARTE I

Questão 1 (1.5 pontos) Seja $X \neq \emptyset$ e considere $\mathcal{A} = \{A \in P(X) \mid A \text{ \'e finito ou } A^c \text{ \'e finito}\}.$

- (a) Mostre que \mathcal{A} é uma σ -álgebra de subconjuntos de X.
- (b) Nas condições anteriores, suponha que $X = \mathbf{N}$. Decida se vale ou não a seguinte afirmação, e justifique:

" $f: X \to \mathbf{N} \subset \mathbf{R} \ \text{\'e \mathcal{A}-mensur\'avel} \iff f(X) \ \text{\'e finito ou cont\'em} \ \{n \in \mathbf{N} \ | n \ge n_0\} \ para algum \ n_0 \in \mathbf{N}$."

Questão 2 (1.5 pontos) Seja $X = \{x_n = 1/n \in \mathbf{R} \mid n \in \mathbf{N}\}$. Seja A = P(X) e seja $\mu : A \to \mathbf{R}$ definida por $\mu(A) = \sum_{x \in A} x^2$. Decida se μ é uma medida em (X, A), e justifique.

Questão 3 (1.5 pontos) Seja \mathcal{A} uma σ -álgebra de subconjuntos de X e considere $x_0 \in X$. Tome a medida de Dirac concentrada em $x_0, \nu_{x_0} : \mathcal{A} \to \mathbf{R}$, dada por $\nu_{x_0}(A) = 1$, se $x_0 \in A$ e $\nu_{x_0}(A) = 0$, se $x_0 \notin A$. Seja $f : X \to \mathbf{R}$ uma função limitada e \mathcal{A} -mensurável. Calcule $\int_X f d\nu_{x_0}$.

Questão 4 (1.5 pontos) Seja (X, \mathcal{A}, μ) um espaço de medida finita e considere $f: X \to [0, +\infty[$ mensurável e limitada tal que $\int_X f d\mu = 0$. Prove que existe $M \in \mathcal{A}$, com $\mu(X \setminus M) = 0$ tal que f(x) = 0, para todo $x \in M$.

PARTE II

Questão 5 (1.5 pontos) Seja $I \subset \mathbf{R}^N$ um intervalo fechado com volume $v < \infty$.

- (a) Mostre que se I é limitado, então dado $\epsilon > 0$, existe um intervalo aberto J contendo I cujo volume é $<= v + \epsilon$.
- (b) A hipótese "I é limitado" é essencial?

Questão 6 (1.5 pontos) Mostre que:

- (a) Se $A \subset \mathbf{R}$ é Lebesgue-mensurável então a função característica de $A, \chi_A : \mathbf{R} \to \mathbf{R}$, é Lebesgue-mensurável e se $m(A) < \infty$ então $\int_A \chi_A dm = m(A)$.
- (b) O conjunto de Cantor $K \subset \mathbf{R}$ é Lebesgue-mensurável e m(K) = 0.
- (b) A função característica do conjunto de Cantor $\chi_K:[0,1]\to \mathbf{R}$ é Lebesgue-integrável e $\int_{[0,1]}\chi_Kdm=0$.

Questão 7 (2.5 pontos) Sejam $U \subset \mathbf{R}^n$ um aberto não vazio. Seja $f: U \times [0,1] \to \mathbf{R}$ tal que, para todo $p \in U$, $f_p: [0,1] \to \mathbf{R}$ definida por $f_p(x) = f(p,x)$ é uma função Lebesgue-mensurável e limitada.

(Note que [0, 1] com a medida de Lebesgue é um espaço de medida finita.)

Nestas condições defina $F: U \to \mathbf{R}$ por $F(p) = \int_x f(p, x) dm(x)$.

- (a) Prove que se f é limitada e, para todo $x \in [0,1]$, a função $p \to f(p,x)$ é contínua, então F é contínua.
- (b) Suponha agora que, para todo $x \in [0,1]$, a função $p \to f(p,x)$ é de classe $C^1(U)$ e que exista $M_1 > 0$ tal que

$$\left|\frac{\partial f}{\partial p_i}(p,x)\right| \le M_1, \ \forall (p,x) \in U \times [0,1].$$

Prove que F é de classe $C^1(U)$ e que $\frac{\partial F}{\partial p_j}(p) = \int_X \frac{\partial f}{\partial p_j}(p,x) dm(x)$, para todo $p \in U$ e $j \in \{1,\ldots,n\}$.

(d) Os resultados dos ítens anteriores continuam válidos se [0,1] for substituído por um subconjunto $X \subset \mathbf{R}$ Lebesgue-mensurável de medida finita? Justifique.

PARTE III

Questão 8 (2 pontos) (Prova detalhada de um caso particular do Lema 3.3)

Seja $\Omega \subset \mathbf{R}^2$ aberto e seja $E \subset \Omega$ compacto. Suponha que para cada $\epsilon > 0$ existe um intervalo $I \subset \mathbf{R}^n$ aberto (não necessariamente contido em Ω), contendo E, tal que $\operatorname{Vol}(I) < m^*(E) + \epsilon$.

Mostre que para cada $\delta > 0$ existem intervalos abertos I_1, I_2, \dots, I_m tais que

$$\overline{I}_j \subset \Omega, j = 1, 2, \dots, m,$$

$$E \subset I_1 \cup I_2 \cup \cdots \cup I_m$$
 e

$$\operatorname{Vol}(I_1) + \operatorname{Vol}(I_2) + \cdots + \operatorname{Vol}(I_m) < m^*(E) + \delta.$$

Questão 9 (2 pontos) (Coordenadas Polares) Considere $\Phi: \Omega \subset \mathbf{R}^2 \to \Phi(\Omega) \subset \mathbf{R}^2$ definida por $\Phi(r,\theta) = (r\cos\theta, r\sin\theta)$.

- (a) Mostre que se $\Omega = (0, r_0) \times (\theta_0, \theta_0 + 2\pi)$, então Φ é um difeomorfismo de classe C^1 .
- (b) Para $X = (x_1, x_2) \in \mathbf{R}^2 \{O\}$ denotaremos por θ_X o ângulo formado pelo segmento \overline{OX} com o semi-eixo positivo Ox_1 no sentido anti-horário.

Sejam $r_2 > r_1 > 0$ e considere o anel $A = \{X \in \mathbf{R}^2 \mid r_1 \le ||X|| \le r_2\}.$

Sejam $\theta_1 < \theta_2$ tais que $\theta_2 - \theta_1 < 2\pi$ e seja R o subconjunto do anel A definido por $R = \{X = (x_1, x_2) \in A \mid \theta_1 \leq \theta_X \leq \theta_2\}$. Mostre que é possível usar Coordenadas Polares para calcular $\int_R x_1 x_2 dm$, e calcule $\int_R x_1 x_2 dm$ usando-as.

(c) Como poderíamos usar coordenadas polares para calcular $\int_A f dm$ no caso de f ser uma função contínua em \mathbb{R}^2 ?